If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.35x^2-335x+3000=0
a = 3.35; b = -335; c = +3000;
Δ = b2-4ac
Δ = -3352-4·3.35·3000
Δ = 72025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72025}=\sqrt{25*2881}=\sqrt{25}*\sqrt{2881}=5\sqrt{2881}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-335)-5\sqrt{2881}}{2*3.35}=\frac{335-5\sqrt{2881}}{6.7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-335)+5\sqrt{2881}}{2*3.35}=\frac{335+5\sqrt{2881}}{6.7} $
| -8=4(w-8)-7w | | 8/6+8/6=3/2=9-x/4 | | 5(7x-4)+2(2x-3)=130 | | 0.3x+1.75=3.2x | | (y-()-(y+9)=6y | | -5y=4,95 | | Y-0.8y=20 | | -4w+6w=6 | | g=W/8 | | -2/3w+7/3w=-7/5 | | (t-1)^2=12 | | 9y+5y=-35 | | 3(t-4)+6=3(2t-6) | | 62.5=5t | | 4(x^2-9)-(4-x^2-9)=-5 | | 4y−3=−(−4y+3) | | (x−4)^2=9 | | m2+12m=0 | | a^2=11a | | x–8=12 | | 2(5y-10)=5y+40 | | x–6=4 | | −7x−2=−4(x+4)+7 | | 12s=20949 | | 3.9(13.6r-4.7)=50.4 | | 40-x/3=4+ | | 5(x+9/10)=6(x+9/4) | | 7(u+6)=-4(5u-8)+9u | | 6x+48x-40=3x-6 | | x÷3-3=15 | | 0.544+50.4x^2=0 | | 0.544+54.4x^2=4x^2 |